Multibump solutions for quasilinear elliptic equations
نویسندگان
چکیده
منابع مشابه
Positive Solutions of Quasilinear Elliptic Equations
(1.2) { −∆pu = λa(x)|u|p−2u, u ∈ D 0 (Ω), has the least eigenvalue λ1 > 0 with a positive eigenfunction e1 and λ1 is the only eigenvalue having this property (cf. Proposition 3.1). This gives us a possibility to study the existence of an unbounded branch of positive solutions bifurcating from (λ1, 0). When Ω is bounded, the result is well-known, we refer to the survey article of Amann [2] and t...
متن کاملLarge Solutions for an Elliptic System of Quasilinear Equations
In this paper we consider the quasilinear elliptic system ∆pu = uv, ∆pv = uv in a smooth bounded domain Ω ⊂ R , with the boundary conditions u = v = +∞ on ∂Ω. The operator ∆p stands for the p-Laplacian defined by ∆pu = div(|∇u|p−2∇u), p > 1, and the exponents verify a, e > p − 1, b, c > 0 and (a − p + 1)(e − p + 1) ≥ bc. We analyze positive solutions in both components, providing necessary and ...
متن کاملExistence of solutions for quasilinear degenerate elliptic equations ∗
In this paper, we study the existence of solutions for quasilinear degenerate elliptic equations of the form A(u) + g(x, u,∇u) = h, where A is a Leray-Lions operator from W 1,p 0 (Ω, w) to its dual. On the nonlinear term g(x, s, ξ), we assume growth conditions on ξ, not on s, and a sign condition on s.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2012
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2012.02.009